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CHARACTERISTICS OF THE RIAM-COMPACT® 

Governing equations 

We consider a three-dimensional airflow of incompressible and viscous fluid over 
complex terrain with characteristic length scales on the order of kilometers, so that the 
Coriolis force can be neglected. In a DNS, the dimensional governing equations consist 
of the continuity and Navier-Stokes equations, as follows: 
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(2), 

where the subscripts i and j=1, 2, and 3 correspond to the streamwise (x), spanwise (y), 
and vertical (z) directions, respectively. In the above equations, ui is the instantaneous 
velocity component in the i-direction, p is the instantaneous pressure, ρ0 is the 
reference density, and μ  is the viscosity coefficient. All the variables are 
non-dimensionalized by an appropriate velocity Uin and a length scale h, such as ui*= 
ui/Uin and xi*= xi/h, resulted in the following dimensionless equations: 
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where Re (=ρ0Uin h/μ) is the Reynolds number, and the asterisk is omitted. 
In an LES, the flow variables are divided into a GS (Grid-Scale) part and a SGS 

(SubGrid-Scale) part by the filtering operation. The filtered continuity and Navier-Stokes equations 
written in non-dimensional form are given by 
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where ui  is the instantaneous filtered velocity component in the i-direction, and p  is 
the instantaneous filtered pressure. The effect of the unresolved subgrid-scales appears 
in the SGS stress as follows: 
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which must be modeled. In this study,  ij is parameterized by an eddy viscosity 
assumption of Smagorinsky (1) through the following constitutive relations: 
 

   ij ij kk SGS ijS  / 3 2d i  

(8), 

SGS s sC f S b g2  

(9), 

f zs    1 25exp /d i  
(10), 

S S Sij ij 2
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  h h hx y zd i1 3/
 

(13), 

where  ij  is the Kronecker delta, SGS is the eddy viscosity, Sij  is the resolved 
strain-rate tensor, Cs (=0.1) is the dimensionless model coefficient (i.e., Smagorinsky 
constant), which is multiplied by the Van Driest exponential wall damping function fs  
in order to account for the near wall effect,   is the grid-filter width, which is a 
characteristic length scale of the largest subgrid-scale eddies, and S  is the magnitude 
of the resolved strain-rate tensor. 



Coordinate system and variable arrangement 

The most important factor involved in a successfully accurate simulation of airflow over 
complex terrain is correctly determining how to specify the topography model as the boundary 
conditions in the computation. In the present study, we employ a generalized curvilinear 
collocated grid, where the Cartesian velocity components and pressure are defined at the center 
of a cell, while the volume flux components multiplied by the Jacobian are defined at the 
mid-point on their corresponding cell surfaces. The original governing equations in the physical 
space are transformed to the computational space through a coordinate transformation (see Fig.1 
and Fig.2). 

 

 

 

Numerical method 

The coupling algorithm of the velocity and pressure fields is based on a fractional step 
method (2) with the Euler explicit scheme. Therefore, the velocity and pressure fields are 
integrated by the following procedure. In the first step, the intermediate velocity field is 
calculated from the momentum equations without the contribution of the pressure gradient. In 
the next step, the pressure field is computed iteratively by solving the Poisson equation with the 
SOR (Successive Over Relaxation) method. Finally, the divergence-free velocity at the (n+1) 
time-step is then obtained by correcting the intermediate velocity field with the computed 
pressure gradient. As for the spatial discretization in the governing equations, a second-order 
accurate central difference approximation is used, except for the convective terms. For the 
convective terms written in non-conservation form, a modified third-order upwind biased 
scheme (3) is used. The weight of the numerical viscosity term is sufficiently small (α=0.5), 
compared to the Kawamura-Kuwahara scheme (α=3) (4) (see Table 1). 
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